Cryptographic algorithms

Prof. Bart Preneel
COSIC
Bart.Preneel(at)esatDOTkuleuven.be
http://homes.esat.kuleuven.be/~preneel

© Bart Preneel. All rights reserved
Outline

1. Cryptology: concepts and algorithms
 - symmetric algorithms for confidentiality
 - symmetric algorithms for data authentication
 - public-key cryptology

2. Cryptology: protocols
 - identification/entity authentication
 - key establishment

3. Public-Key Infrastructure principles
Outline (2)

- 4. Networking protocols
 - email, web, IPsec, SSL/TLS
- 5. New developments in cryptology
- 6. How to use cryptography well
- 7. Hash functions
Definitions

Confidentiality

Integrity

Availability

Confidentiality

Authentication

Data

Encryption

Data Authentication

Anonymity

Identification

Authorisation

Non-repudiation of origin, receipt

Contract signing

Notarisation and Timestamping

Don’t use the word authentication without defining it
Cryptology: basic principles

Listen or Modify

Alice

Eve

Bob

Clear text

CRYP TOB OX

%& C@ &^(

%& C@ &^(

CRYP TOB OX

Clear text
Symmetric cryptology: confidentiality

- old cipher systems:
 - transposition, substitution, rotor machines
- the opponent and her power
- the Vernam scheme
- DES and triple-DES
- AES
- RC4
Old cipher systems (pre 1900)

- Caesar cipher: shift letters over k positions in the alphabet (k is the secret key)

 THIS IS THE CAESAR CIPHER

 WKLV LV WKH FDHVUDU FLSKHU

- Julius Caesar never changed his key ($k=3$).
Cryptanalysis example:

TIPGK RERCP JZJZJ WLE
UJQHL SFSDQ KAKAK XMF
VKRIM TGTER LBLBL YNG
WLSJN UHUFS MCMCM ZOH
XDTKO VOVGT NDNDN API
YNULP WKWHU OEOEO BQJ
ZOVMQ XKKIV PFPFP CRK
APWNR YLYJW QGQGQ DSL
BQXOS ZMXKK RHRHR ETM
CRYPT ANALY SISIS FUN
GVCTX EREPC WMWMW JYR
HWDUY FSFQD XNXNX KZS
IXEVTZ GTGRE YOYOY LAT
JYFWA HUHSF ZPZPZ MBU
KZGXV IVITG AQAQA NCV
LHYAC JWJUH BRBRB ODW
MBIZD KXXVI CSCSC PEX
NCJAE LYLWJ DTTDT QFY
ODKBF MZMXX EUEUE RGZ
PELCG NANYL FVFVF SHA
QFMDH OBOZM GWGWG TIB
RGNEI PCPAN HXHXX UJC
SHOFJ QDQBO IYIYI VKD

Plaintext? k = 17
Old cipher systems (pre 1900) (2)

• Substitutions
 – ABCDEFGHIJKLMNOPQRSTUVWXYZ
 – MZNJSOAXFQGYKHLUCTDVWBIPER

• Transpositions

 TRANS
 POSIT
 IONS

 ORI S
 NOTIT
 OSANP

! Easy to break using statistical techniques
Security

• there are $n!$ different substitutions on an alphabet with n letters
• there are $n!$ different transpositions of n letters
• $n=26$: $n! = 403291461126605635584000000 = 4 \cdot 10^{26}$ keys
• trying all possibilities at 1 nanosecond per key requires....

$$4 \cdot 10^{26} / (10^9 \cdot 10^5 \cdot 4 \cdot 10^2) = 10^{10} \text{ years}$$

keys per second seconds per day days per year
Letter distributions
Assumptions on Eve (the opponent)

• A scheme is broken if Eve can deduce the key or obtain additional plaintext
• Eve can always try all keys till “meaningful” plaintext appears: a brute force attack
 – solution: large key space
• Eve will try to find shortcut attacks (faster than brute force)
 – history shows that designers are too optimistic about the security of their cryptosystems
Assumptions on Eve (the opponent)

- Cryptology = cryptography + cryptanalysis
- Eve knows the algorithm, except for the key (Kerckhoffs’s principle)
- increasing capability of Eve:
 - knows some information about the plaintext (e.g., in English)
 - knows part of the plaintext
 - can choose (part of) the plaintext and look at the ciphertext
 - can choose (part of) the ciphertext and look at the plaintext
New assumptions on Eve

- Eve may have access to **side channels**
 - timing attacks
 - simple power analysis
 - differential power analysis
 - acoustic attacks
 - electromagnetic interference

- Eve may launch **(semi-)invasive attacks**
 - differential fault analysis
 - probing of memory or bus
Side channel analysis

Server
- store the files
- and run the Treatment software

Main PC
- run the Acquisition software

Card reader
- command emission
- GCR

Oscilloscope
- Scope trigger on IO

Protection box

Card extension

Files transfer

Arm scope retrieve file

Current waveform acquisition
Timing attacks and power analysis

FIGURE 2
RSA REF Modular Exponentiation Times

- IP -
- Round 1 -
- Round 2 -
Side channel analysis: EMA
Cryptology + side channels

Alice

Clear text → CRYPTOB OX → %^C& @ & ^ (→ Eve

Bob

% ^ C & @ & ^ (→ CRYPTOB OX → Clear text

Listen or Modify

side channels

side channels
Mechanical: Hagelin C38
Problem: what is this?

• Cryptogram [=14 January 1961 11.00 h]

• `<AHQNE XVAZW IQFFR JENFV OUXBD
LQWDB BXFRZ NJVYB QVGOZ KFYQV
GEDBE HGMPS GAZJK RDJQC VJTEB
XNZZH MEVGS ANLLB DQCGF PWCVR
UOMWW LOGSO ZWVVV LDQNI YTZAA
OIJDR UEAAV RWYXH PAWSV CHTYN
HSUIY PKFPZ OSEA W SUZMY QDYEL
FUVOA WLSSD ZVKPU ZSHKK PALWB
SHXRR MLQOK AHQNE 11205
141100>`
The answer

- Plaintext [=14 January 1961 11.00 h]

- DOFGD VISWA WVISW JOSEP HWXXW
 TERTI OWMIS SIONW BOMBO KOWVO
 IRWTE LEXWC EWSUJ ETWAM BABEL
 GEWXX WJULE SWXXW BISEC TWTre
 SECVX XWRWV WMWPR INTEX WXXWP
 RIMOW RIENT ENVoy EWRUS URWWX
 XWPou VEZWR EGLER WXXWS ECUNd
 OWREP RENDR EWdUR GENCE WPLAN
 WBRAZ ZAWWC
The answer (in readable form)

• Plaintext [=14 January 1961 11.00 h]

 • TRESECV. R V M PRINTEX. PRIMO RIEN ENVOYE RUSUR. POUVEZ REGLER. SECUNDO REPRENDRE DURGENCE PLAN BRAZZA VIS A VIS JOSEP H. TERTIO MISSION BOMBOKO VOIR TELEX CE SUJET AMBABELGE. JULES.
The Rotor machines (WW II)
Life cycle of a cryptographic algorithm

- Idea
- Mathematical analysis
- Publication
- Public evaluation
- HW/SW implementation
- Standardization
- Industrial products $$$
- Take out of service
- RIP
- OK
Vernam scheme (1917)
Mauborgne: one time pad (1917+x)

key is random string, as long as the plaintext
information theoretic proof of security
Vernam scheme

- $0 + 1 = 1$
- $1 + 0 = 1$
- $0 + 0 = 0$
- $1 + 1 = 0$

- identical mathematical symbols can result in different electrical signals
Three approaches in cryptography

• **information theoretic** security
 – ciphertext only
 – part of ciphertext only
 – noisy version of ciphertext

• **system-based** or practical security
 – also known as “prayer theoretic” security

• **complexity theoretic** security:
 model of computation, definition, proof
 – variant: quantum cryptography
Model of a practical stream cipher

IV → next state function → output function

“looks” random

P → C → P

IV → next state function → output function
A5/1 stream cipher (GSM)

Clock control: registers agreeing with majority are clocked (2 or 3)
A5/1 stream cipher (GSM)

A5/1 attacks

• exhaustive key search: 2^{64} (or rather 2^{54})
 – Hardware 10K$ < 1$ minute ciphertext only
• search 2 smallest registers: 2^{45} steps
• [BWS00] 1 minute on a PC
 – 2 seconds of known plaintext
 – 2^{48} precomputation, 146 GB storage
• [BB05]: 10 minutes on a PC,
 – 3-4 minutes of ciphertext only
Bluetooth stream cipher

brute force: 2^{128} steps

[Lu+05] 24 known bits of 2^{24} frames, 2^{38} computations, 2^{33} memory

- designed by Ron Rivest (MIT)
- leaked in 1994
- \textbf{S[0..255]}: secret table derived from user key \textbf{K}

\begin{verbatim}
for i=0 to 255 S[i] := i
j := 0
for i=0 to 255
 j := (j + S[i] + K[i]) mod 256
swap S[i] and S[j]
i := 0, j := 0
\end{verbatim}

Generate key stream which is added to plaintext

\[i := i + 1 \]
\[j := (j + S[i]) \mod 256 \]

swap \(S[i] \) and \(S[j] \)

\[t := (S[i] + S[j]) \mod 256 \]

output \(S[t] \)
RC4: weaknesses

• often used with 40-bit key
 – US export restrictions until Q4/2000
• best known general shortcut attack: 2^{241}
• weak keys and key setup (shuffle theory)
• some statistical deviations
 – e.g., 2nd output byte is biased
 – solution: drop first 256 bytes of output
• problem with resynchronization modes (WEP)
Block cipher

• large table: list n-bit ciphertext for each n-bit plaintext
 – if n is large: very secure (codebook)
 – but for an n-bit block: 2^n values
 – impractical if $n \geq 32$

• alternative $n = 64$ or 128
 – simplify the implementation
 – repeat many simple operations
Block cipher (2)

- larger data units: 64…128 bits
- memoryless
- repeat simple operation (round) many times
Data Encryption Standard (1977)

- encrypts 64 plaintext bits under control of a 56-bit key
- 16 iterations of a relatively simple mapping
- FIPS: US government standard for sensitive but unclassified data
- worldwide de facto standard since early 80ies
- surrounded by controversy
Security of DES (56 bit key)

- PC: trying 1 DES key: 15 ns
- Trying all keys on 250 PCs:
 1 month: \(2^{26} \times 2^{16} \times 2^5 \times 2^8 = 2^{55}\)
- M. Wiener’s design (1993):
 1,000,000 $ machine: 3 hours
 (in 2010: 5 seconds)

EFF Deep Crack (July 1998)
250,000 $ machine: 50 hours…
DES: security (ct’d)

- Moore’s “law”: speed of computers doubles every 18 months
 - key lengths need to grow in time
- Use new algorithms with longer keys
 - adding 1 key bits doubles the work for the attacker
- Key length recommendations in 2009
 - < 64 bits: insecure
 - 80 bits: 3-5 years
 - 100 bits: 20-25 years
DEPARTMENT OF COMMERCE

National Institute of Standards and Technology
[Docket No. 040602169–4169–01]

Announcing Proposed Withdrawal of Federal Information Processing Standard (FIPS) for the Data Encryption Standard (DES) and Request for Comments

AGENCY: National Institute of Standards and Technology (NIST), Commerce.

ACTION: Notice; request for comments.

SUMMARY: The Data Encryption Standard (DES), currently specified in Federal Information Processing Standard (FIPS) 46–3, was evaluated pursuant to its scheduled review. At the conclusion of this review, NIST determined that the strength of the DES algorithm is no longer sufficient to adequately protect Federal government information. As a result, NIST proposes to withdraw FIPS 46–3, and the associated FIPS 74 and FIPS 81. Future use of DES by Federal agencies is to be permitted only as a component function of the Triple Data Encryption Algorithm (TDEA).

- two-key triple DES: until 2009
- three-key triple DES: until 2030
Symmetric Key Lengths and Moore’s “law”

Moore’s “law”: speed of computers doubles every 18 months
AES (Advanced Encryption Standard)

- open competition launched by US government (Sept. ‘97) to replace DES
- 22 contenders including IBM, RSA, Deutsche Telekom
- 128-bit block cipher with key of 128/192/256 bits
- as strong as triple-DES, but more efficient
- royalty-free

A machine that cracks a DES key in 1 second would take 149 trillion years to crack a 128-bit key
AES: Rijndael

- Key length: 16/24/32 bytes
- Block length:
 - Rijndael: 16/24/32 bytes
 - AES: 16 bytes only
AES Status

• FIPS 197 published on Nov. 6, ‘01, effective May 26, ‘02
• mandatory for sensitive US govt. information
• mid 2003: AES-128 also for classified information and AES-192/-256 for secret and top secret information!
• fast adoption in the market (thousands of products)
 – Feb. 2010: 1290 AES product certifications by NIST
 – standardization: ISO, IETF, IEEE 802.11,…
• slower adoption in financial sector
• software: 7.6 cycles/byte [Käsper-Schwabe’09]
• hardware: Intel will provide AES instruction (Westmere, 2010) at 0.75 cycles/byte for decryption
Encryption limitations

- Ciphertext becomes random string: “normal” crypto does not encrypt a credit card number into a (valid) credit card number
- Typically does not hide the length of the plaintext (unless randomized padding)
- Does not hide existence of plaintext (requires steganography)
- Does not hide that Alice is talking to Bob (requires traffic confidentiality)
Symmetric cryptology: data authentication

• the problem
• hash functions without a key
 – MDC: Manipulation Detection Codes
• hash functions with a secret key
 – MAC: Message Authentication Codes
Data authentication: the problem

• encryption provides confidentiality:
 – prevents Eve from learning information on the cleartext/plaintext
 – but does not protect against modifications (active eavesdropping)

• Bob wants to know:
 – the source of the information (data origin)
 – that the information has not been modified
 – (optionally) timeliness and sequence

• data authentication is typically more complex than data confidentiality
Data authentication: MAC algorithms

- Replace protection of authenticity of (long) message by protection of secrecy of (short) key
- Add MAC to the plaintext

CBC-MAC

HMAC

This is an input to a MAC algorithm. The input is a very long string, that is reduced by the hash function to a string of fixed length. There are additional security conditions: it should be very hard for someone who does not know the secret key to compute the hash function on a new input.

7E6FD7198A198FB3C
MAC algorithms

Clear text → MAC → Clear text

Modify

Clear text → VERIFY → Clear text

Key

50
Data authentication: MAC algorithms

• typical MAC lengths: 32..96 bits
 – Forgery attacks: 2^m steps with m the MAC length in bits

• typical key lengths: (56)..112..160 bits
 – Exhaustive key search: 2^k steps with k the key length in bits

• birthday attacks: security level smaller than expected
MAC algorithms

• Banking: CBC-MAC based on triple-DES

• Internet: HMAC and CBC-MAC based on AES

• information theoretic secure MAC algorithms (authentication codes):
 – highly efficient
 – rather long keys
 – part of the key refreshed per message
CBC-MAC based on AES

security level: 2^{64}

select leftmost 64 bits
Data authentication: MDC

• MDC (manipulation detection code)
• Protect short hash value rather than long text

This is an input to a cryptographic hash function. The input is a very long string, that is reduced by the hash function to a string of fixed length. There are additional security conditions: it should be very hard to find an input hashing to a given value (a preimage) or to find two colliding inputs (a collision).

1A3FD4128A198FB3CA345932
MDC Security requirements (n-bit result)

preimage

\[? \to h \]

\[h(x) \]

\[2^n \]

\[2^n \]

2\(^{\text{nd}}\) preimage

\[x \neq ? \]

\[h(x) = h(x') \]

collision

\[? \neq ? \]

\[h \]

\[h \]

\[2^n \]

\[2^n/2 \]
Data authentication: MDC

• n-bit result

• preimage resistance: for given y, hard to find input x such that \(h(x) = y \) \((2^n \text{ operations}) \)

• 2\text{nd} preimage resistance: hard to find \(x' \neq x \) such that \(h(x') = h(x) \) \((2^n \text{ operations}) \)

• Collision resistance: hard to find \((x, x') \) with \(x' \neq x \) such that \(h(x') = h(x) \) \((2^{n/2} \text{ operations}) \)
MD5 and SHA-1

• SHA-1:
 – (2nd) preimage 2^{160} steps
 – collisions 2^{80} steps

 60 M\$ for 1 year

• MD5
 – (2nd) preimage 2^{128} steps
 – collisions 2^{64} steps

 15 K\$ for 1 month

Shortcut: Aug. 2004: 2^{39} steps
(today: milliseconds)

Shortcut: Aug. 2007: 2^{60} steps
Public-key cryptology

• the problem
• public-key encryption
• digital signatures
• an example: RSA
• advantages of public-key cryptology
Limitation of symmetric cryptology

- Reduce security of information to security of keys

- But: how to establish these secret keys?
 - Cumbersome and expensive
 - Or risky: all keys in 1 place

- Do we really need to establish secret keys?
Public key cryptology: encryption
Public key cryptology: digital signature
A public-key distribution protocol: Diffie-Hellman

- Before: Alice and Bob have never met and share no secrets; they know a public system parameter α

\[
\begin{align*}
\text{generate } x & \quad \alpha^x & \quad \text{generate } y \\
\text{compute } \alpha^x & \quad \alpha^x & \quad \text{compute } \alpha^y \\
\text{compute } k = (\alpha^y)^x & \quad \text{compute } k = (\alpha^x)^y
\end{align*}
\]

- After: Alice and Bob share a short term key k
 - Eve cannot compute k: in several mathematical structures it is hard to derive x from α^x (this is known as the discrete logarithm problem)
RSA (‘78)

- Choose 2 “large” prime numbers p and q
- modulus n = p.q
- compute $\lambda(n) = \text{lcm}(p-1,q-1)$
- choose e relatively prime w.r.t. $\lambda(n)$
- compute $d = e^{-1} \mod \lambda(n)$

- public key = (e,n)
- private key = d of (p,q)

The security of RSA is based on the “fact” that it is easy to generate two large primes, but that it is hard to factor their product

- encryption: $c = m^e \mod n$
- decryption: $m = c^d \mod n$
Factorisation records
2009: 768 bits or 232 digits

1 digit ~3.3 bits
4-channel Varian spectrometer

11.7 T Oxford magnet, room temperature bore

15 = 5 \times 3

grad students in sunny California...
Advantages of public key cryptology

• Reduce protection of information to protection of authenticity of public keys

• Confidentiality without establishing secret keys
 – extremely useful in an open environment

• Data authentication without shared secret keys: digital signature
 – sender and receiver have different capability
 – third party can resolve dispute between sender and receiver
Disadvantages of public key cryptology

• Calculations in software or hardware **two to three orders of magnitude** slower than symmetric algorithms

• Longer keys: 1024 bits rather than 56…128 bits

• What if factoring is easy?
Crypto software libraries

http://ece.gmu.edu/crypto_resources/web_resources/libraries.htm

<table>
<thead>
<tr>
<th>C/C++/C#</th>
<th>Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botan (C++)</td>
<td>SunJCA/JCE</td>
</tr>
<tr>
<td>Cryptlib</td>
<td>BouncyCastle (BC)</td>
</tr>
<tr>
<td>Crypto++ (C++)</td>
<td>CryptixCrypto (until ’05)</td>
</tr>
<tr>
<td>Libgcrypt (C++)</td>
<td>EspreSSL</td>
</tr>
<tr>
<td>MatrixSSL (C++)</td>
<td>FlexiProvider</td>
</tr>
<tr>
<td>(C++) embedded</td>
<td>GNU Crypto</td>
</tr>
<tr>
<td>Miracl (binaries)</td>
<td>IAIK</td>
</tr>
<tr>
<td>OpenSSL (C++)</td>
<td>Java SSL</td>
</tr>
<tr>
<td></td>
<td>RSA JSafe</td>
</tr>
<tr>
<td>BouncyCastle (BC#)</td>
<td></td>
</tr>
</tbody>
</table>

[Source](http://ece.gmu.edu/crypto_resources/web_resources/libraries.htm)
Reading material

• B. Preneel, Modern cryptology: an introduction.
 – This text corresponds more or less to the second half of these slides
 – It covers in more detail how block ciphers are used in practice, and explains how DES works.
 – It does not cover identification, key management and application to network security.
Selected books on cryptology

- Other authors: Johannes Buchmann, Serge Vaudenay
Books on network security and more

More information: some links

• IACR (International Association for Cryptologic Research): www.iacr.org
• IETF web site: www.ietf.org
• Cryptography faq:
 www.faqs.org/faqs/cryptography-faq
• Counterpane links:
 www.counterpane.com/hotlist.html
• Digicrime (www.digicrime.org) - not serious but informative and entertaining