Modern privacy-friendly computing

Dr George Danezis
(g.danezis@ucl.ac.uk)
The “easy” privacy problem: Hiding information from third parties

- Alice and Bob trust each other with their “private” information.
- They wish to hide their interactions from third parties:
 - Encryption hides content.
 - Anonymous communications hide meta-data.
- A relatively well-understood problem.
 - Widely deployed (TLS, Tor).
The “hard” privacy problem: Hiding information from your partners

- Example: “The Millionaire's problem” (Yao)
- Alice and Bob do not trust each other with their secrets, but still want to jointly compute on them.
- Associated problem: they may not trust each other to perform any computations correctly.
The formal problem

- Consider a function \(f \) with \(n \) inputs \(x_i \) from distinct parties returning a result: \(y = f(x_1, \ldots, x_n) \)
 - Correctness: We want to compute \(y \)
 - Privacy: do not learn anything more about \(x_i \) than what we would learn by learning \(y \). Despite the observations \(o \) from the protocol

- In terms of probability:
 - \(\Pr[x_i \mid o, y, x_j] = \Pr[x_i \mid y, x_j] \)
Straw-man Solution: Trusted Third Party

TTP: Every participant has to trust TTP for confidentiality, integrity and availability.
What is wrong with Trusted Third Parties

- May not exist!

- Even if it may exist: The 4 Cs
 - **Cost**: what is the business model? How to implement cheaply?
 - **Corruption**: How do you really know that it will not side with the adversary?
 - **Compulsion**: Legal or extra-legal compulsion to reveal secrets.
 - **Compromise**: It may get hacked!

- Conclusion:
 - TTP: not a robust implementation strategy.
 - However: a great specification strategy (ideal functionality).
No Trusted third party →
Private Computations are impossible!?

• Aim of this talk:
 – Convince you that you can actually compute on secret data, without learning the inputs to the computation.

 – How?
 • Example of linear computations.
 • Understanding of what is missing for a complete system.
Theory:
“Any function can be computed privately without a TTP”

- Even without a coordinator.
- Participants do not learn other's secrets.
 - Can be made robust to cheating.
 - Robust to stopping / failures.

- Two adversary models:
 - Honest but curious: adversary executes protocols correctly but tries to learn as much as possible. ($\frac{1}{2} N + 1$ honest)
 - Byzantine: will send, or drop arbitrary messages to learn the secrets. ($\frac{2}{3} N + 1$ honest)

- Both can be tolerated, but with different efficiency.
How does one prove this generic result?

- **Computation theory:**
 - NAND is sufficient to represent any boolean circuit.
 - NAND can be expressed using the algebraic expression:
 \[\text{NAND}(A,B) = 1 - AB \]
 - If we can express binary digits, compute addition and multiplication privately, we can compute all circuits.
Two approaches

- Homomorphic encryption:
 - Express 0,1 as ciphertexts $E(0)$, $E(1)$.
 - Allow for operations on ciphertexts producing the cipher text of an addition and multiplication.
 - Here in depth: additive homomorphism only.

- Secret sharing:
 - Express 0,1 as “shares” distributed between users.
 - Do addition and multiplication using protocols on shares.
 - Here in depth: SPDZ addition and multiplication.
Homomorphic Encryption
Homomorphic encryption
The Big Picture

Alice and Bob encrypt their inputs

E(x₁)

Homomorphic operations on ciphertexts

f

Output ciphertext of results

E(y) Not “y”

E(x₂)
Additively homomorphic public-key encryption

• Goal – define functions for:
 – GenKey
 – Encrypt
 – Decrypt
 – Add
 – (no multiply)

• Note:
 – Add n times is multiplication with a public constant
Mathematical reminder

- Define two elements \(g, h \) that are generators of a cyclic group within which the discrete logarithm problem is believed to be hard.
 - Generators means: \(g^i \) may lead to all group elements.

Discrete logarithm problem:
- Given \(g, x \rightarrow g^x \) is easy to compute.
- Given \(g, g^x \rightarrow x \) is hard to compute.

Security assumption.

- Example such groups:
 - Integers modulo a prime ("mod p"). (>1024 bits)
 - Points on Elliptic curves. (>160 bits)
The Benaloh Crypto-system (1)

Key Generation

- First introduced in the context of e-voting, to count votes.
- The Scheme:
 - Public: g, h
 - Key generation: generate a random “x”; Private key is “x”, Public key is $pk = g^x$.
The Benaloh Crypto-system (2)

Encryption

• Encryption: 2 elements
 – Encryption of \(m \) with \(pk \):
 random \(k; \)
 \[
 E(m; k) = (g^k, pk^k h^m)
 \]
 If \(k \) not known this is like random, totally hiding \(h^m \)
The Benaloh Crypto-system (3)
Decryption

- Decryption:
 - Decryption of \((a,b)\) with \(x\):
 \[
 h^m = b \left(a^x\right)^{-1} = g^{xk} h^m / g^{xk} = h^m
 \]
 \[
 m = \log_h(h^m)
 \]

- But is \(\log_h\) not hard to compute?
 - Make a table for all small (16-32 bit) values.
The additive homomorphism - Addition

Reminder:
\[E(m; k) = (g^k, pk^k h^m) \]

- **Homomorphism**
 - Addition of
 \[E(m_0; k_0) = (a_0, b_0) \text{ and } E(m_1; k_1) = (a_1, b_1) \]
 \[E(m_0 + m_1; k_0 + k_1) = (a_0 a_1, b_0 b_1) \]

- Why does that work?
 - \((a_0 a_1, b_0 b_1) = (g^{k_0} g^{k_1}, g^{xk_0} h^{m_0} g^{xk_1} h^{m_1}) = (g^{k_0+k_1}, g^{x(k_0+k_1)} h^{m_0+m_1}) \)
The additive homomorphism - Multiplication by a **public** constant

- Homomorphism
 - Multiplication of
 \[E(m_0; k_0) = (a_0, b_0) \text{ with a} \]
 public constant \(c \):
 \[E(cm_0; ck_0) = ((a_0)^c, (b_0)^c) \]

- Why it works:
 - \((a_0)^c, (b_0)^c\) = \((g^{ck_0}, \text{pub}^{ck_0} h^{cm}) = E(cm_0; ck_0)\)

- Not sufficient for all operations.
 (No multiplication of secrets)
Application 1: Simple Statistics

• **Problem:** A poll asks a number of participants whether they prefer “red” or “blue”. How many said “red” and how many “blue”?

• **Solution:** Each participant submits a Benaloh ciphertext for both “red” and “blue” to an authority. The authority can homomorphically add them.
Illustrated

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>...</th>
<th>Zoe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(0)</td>
<td>E(1)</td>
<td>...</td>
<td>E(1)</td>
<td>E(10)</td>
</tr>
<tr>
<td>E(1)</td>
<td>E(0)</td>
<td>...</td>
<td>E(0)</td>
<td>E(5)</td>
</tr>
</tbody>
</table>

Authority

Compute ...
Discussion

• Domain of plaintext is small (up to number of participants), so decryption by enumeration is cheap.

• The Key question: Who's public key? Who has the decryption key?

• The Decryption question: Who decrypts?
 – If single entity → TTP!
 – If no-one: scheme is useless! (Outsourced computation?)
Threshold Decryption

• Answer: it is better if no one has the secret key.
 – No TTP!

• Threshold decryption:
 – The secret key is distributed across many different people.
 – Each have to contribute to the decryption.
 – Even if one is missing, remaining cannot decrypt.
Threshold Decryption – how?

• How?
 – Private keys: x_1, \ldots, x_n
 – Public key: $g^{x_1+\ldots+x_n}$
 – Decryption of (a,b): $hm = b / a^{x_1} / a^{x_2} / \ldots / a^{x_n}$

• Why this works?
 – $(((b / a^{x_1}) / a^{x_2}) / \ldots / a^{x_n}) = b / a^{x_1+\ldots+x_n} = hm$
Beyond the Benaloh limitations

- Raw RSA:
 - Multiplicative homomorphism
 - No addition :-(

- Paillier Encryption:
 - Additive homomorphism only
 - Based on RSA: large ciphertexts, slow

- Schemes based on Pairings on Elliptic curves:
 - Addition and 1 multiplication!

 ...

- Breakthrough: Gentry (2009) A fully homomorphic scheme
 - Extremely inefficient! But cool.

- Somewhat Homomorphic Schemes (SHE):
 - Vinod Vaikuntanathan et al.
 - Larger ciphertexts (30Kb), but fast operations (Add 1ms, Mult 50ms)
 - Variable but limited circuit depth.
What is cool about homomorphic schemes?

• Simple architecture:
 – Everyone just provides encrypted inputs. One party (any) computes the function.

• Secret functions:
 – Parts of the function itself may remain secret. The service can perform whatever operations without telling any party.

• Powerful and efficient:
 – Any function of shallow depth.
 – Linear operations are very fast. (Order one field multiplications)
 – Multiplications can be fast-ish (for SHE)
The downsides of homomorphisms

• Expressiveness:
 – Expressing computations as boolean circuits makes them much more expensive (example: no binary search!)

• Efficiency:
 – Every bit → 160bit, 1024bits, …, 30Kbs.

• The problem of decryption (Part 2): Integrity
Attack: What is the party doing the computation is actively malicious?

Alice and Bob encrypt their inputs

\[E(x_1) \quad E(x_2) \]

Homomorphic operations on ciphertexts

\[f(x_1, x_2) \]

Output ciphertext of results

\[E(y) \]

Threshold Decryption

\[y \]

\[x_1 \]

Attack: A malicious party can simply ask the threshold decryption parties to decrypt a secret, not the output of the computation! (Trade name: a decryption oracle attack)

Lesson: No confidentiality without integrity!
Attack: Integrity and cheating?

Alice and Bob encrypt their inputs

\[E(z) \]
\[E(x_1) \]
\[E(x_2) \]

Homomorphic operations on ciphertexts

Output ciphertext of results

Threshold Decryption

\[E(y') \]

\[y' \]
\[y \]
No confidentiality without integrity!

• What to do?
 – The central party needs to prove that the output of the computation was indeed correct.
 – Easy case: computation is public, anyone can verify it
 • Ouch. Expensive.
 • Techniques to verify correctness of outsourced computations.
 – Hard case: computation is private.
 • No one has really dealt with this case.
 • Maybe: if private information can be turned into data? …
Secret sharing
Secret Sharing based private computations

• The core idea:
 – Each secret is “shared” across many authorities.
 – Those authorities use protocols to transform shares of secrets into shares of function of secrets.
 – Key: addition & multiplication

• SPDZ variant:
 – Pre-computations to speed up multiplication (using SHE)
 – Integrity protection, nearly for free!
Architecture

\[f(x_1, x_2) \]
Secret Sharing: pros and cons

• Pros:
 – Well understood complete protocols.
 – Integrity can be very cheap.
 – Actual operations are very cheap.

• Cons:
 – Network interactions.
 – Vast number of pre-computations (triplets – one per gate).
 – Circuits express inefficiently.
 – Computations cannot be secret!
Overall conclusions

- Private computations:
 - You can do any computation privately.
 - It will cost you.
- Linear operations are cheap.
- Non-linear operations less so.
- Limited non-linear depth helps a lot with efficiency.

- Integrity:
 - A problem for confidentiality.

- Maturity:
 - Tool chains and compilers: research grade.
 - Too slow to use for bulk computations.
 - Special high-value computations OK – i.e. billing.
 - Use it to implement functions of the TCB securely.
Appendix on Secret Sharing
The basic scheme

- We work in the field of integers modulo a prime p
 - Clock arithmetic with “p hour” clock.

- A share of secret “x” is denoted “$<x>$”
 - If we add all shares “$<x>$” (mod p) we get “x”

- Toy example:
 - Prime $p = 2$, $x = 1$
 - Shares $<x>$ are $\{1, 1, 0, 1, 0\}$
 - Check: $1 + 1 + 0 + 1 + 0 \mod 2 = 1$
Addition of secrets is simple!

• Sharing is based on addition:
 – Natural additive homomorphism.

• Add \(<a>\) and \(\):
 – Each authority can simply add the shares
 – \(<c> = <a+b> = <a> + \mod p\)
 – No distributed protocol is necessary.
Public constant addition and multiplication

- **Add** \(<a>\) to a constant \(k\):
 - Split \(k\) into \(<k>\) as \(\{0,0,...,0,k\}\)
 - Do addition between \(<k>\) and \(<a>\)

- **Multiply** \(<a>\) by a public constant \(k\):
 - Each authority privately computes (no interaction)
 - \(<c> = <ka> = k<a>\)
Multiplication of secrets

• More complex:
 – Need some pre-computed values.
 – Interactive protocol between authorities.

• Pre-computed values:
 – Independent from the function “f”.
 – Can be batch produced beforehand.
Multiplication

- Precomputed triples: \(<a>, , <c> \)
 - Such that \(<c> = <ab> \)

- Protocol to multiply \(<x> \) and \(<y> \):
 - Get fresh pre-computed triplet \(<a>,,<c> \)
 - Compute
 \[
 <e> = <x> + <a> \\
 <d> = <y> +
 \]
 - Publish \(<e> \) and \(<d> \) to get \(e \) and \(d \).
 - Compute:
 \[
 <z> = <xy> = <c> - e - d<a> + ed
 \]

Note: \(a, b \) are randomly distributed so they totally hide \(x \) and \(y \)

Linear!
Logic gates

• Share secret input bits <0> or <1>
• Define function f as a circuit
• Boolean gates:
 – NOT(a) = 1 – a
 – AND(a, b) = ab
 • NAND(a, b) = 1 – ab
 – NOR(a, b) = (1 – a) (1 – b)
 – XOR(a, b) = (a-b)^2
The problem with circuits

- Doing an addition of a 32 bit number:
 - Multiplicative depth of about 14.
 - Requires many rounds of interaction.

- It is much faster to do linear operations on shares of the actual secrets rather than bits.

- Solution:
 - Protocol to convert shares of bits to full representations.
 eg. \langle 1 \rangle, \langle 1 \rangle to \langle 3 \rangle
 - Protocol to convert a secret share to its bit representation
 eg. \langle 3 \rangle to \langle 1 \rangle, \langle 1 \rangle
What about integrity?

• Why do we need integrity?
 – Authorities could be malicious
 – Threat: they wish to change the result.
 – Threat: they wish to leak information about the secrets by not following the protocol.

• Traditional approach:
 – Each authority performs a zero-knowledge proof that what it publishes is correct.
 – Downside: expensive process.
SPDZ integrity

- Use a Message Authentication Code
 - Associate the share of a MAC with each secret share.
 - Maintain the MAC through computations.
 - Never reveal the MAC!
 - However, check that it is correct.

- SPDZ MACs:
 - MAC key is a secret v shared as $<v>$
 - Each share $<a>$ has a MAC share $<va>$
 - Protocol to take $<v>$ and endorse it to provide $<v>$

- Authorities know $<v>$ but no one ever knows v
Operations with MACs

- Addition just works by adding secrets and MACs.

- Multiplication:
 - Pre-shared values need to have a MAC.
 - Otherwise it is the same technique, for secret and MAC.

- Constants:
 - Easy to endorse them.
 - For k compute $<k>, <vk> = k<v>$
How to check the MAC without revealing it?

• Intuition:
 – Every value has a MAC associated with it.
 – Operations preserve the MAC.
 – Everything that is declassified needs to have its MAC checked.
 – This is the point where authorities interact!
 • Threat model: one authority can give the wrong share.
 – Check that the relation holds:
 • For fixed MAC key $<v>$ check that $a, <va>$
 • Relation $a<v> = <va>$
 – Without revealing $<v>$.
How?

• Note that:
 – $k<v> == <kv>$
 – Same as $(k<v> - <kv> = <0>)$
 – Same as $w (k<v> - <kv>) = <0>$
 • For a randomly distributed “w”

• Can do many in parallel!
 – $\sum_i w_i (k_i<v> - <k_i<v>) = <0>$
Integrity protocol (outline)

- Perform all operations
- Commit to intermediate results and final results (Do not reveal final results)
- Jointly generate random w_i
- For all intermediate results compute:
 - $<c> = \sum_i w_i (k_i <v> - <k_i<v>) = <0>$
 - Reveal $<c>$ and check it is zero!
 - That guarantees no information leaks from the secrets, since computations are correct until the end.
- Reveal results:
 - $<c> = \sum_i w_i (k_i <v> - <k_i<v>) = <0>$
 - Reveal $<c>$ and check it is zero!
 - That guarantees the actual results are also correct.
The cost of integrity

- Low.
- Two shares instead of one.
- Triplets with MACs for multiplications.
- Two checks per computation
 - That are batched.