Selective Disclosure for Identity Management
A critique of identity

- Identity as a proxy to check credentials
 - Username decides access in Access Control Matrix

- Sometimes this leaks too much information

- Real world examples
 - Tickets allow you to use cinema / train
 - Bars require customers to be older than 18
 - But do you want the barman to know your address?
The privacy-invasive way

- **Usual way:**
 - **Identity provider** certifies attributes of a **subject**.
 - **Relying Party** checks those attributes
 - Match credential with **live person** (biometric)

- **Examples:**
 - E-passport: signed attributes, with lightweight access control.
 - Attributes: nationality, names, number, pictures, ...
 - Identity Cards: signatures over attributes
 - Attributes: names, date of birth, picture, address, ...
Selective Disclosure Credentials

- The players:
 - Issuer (I) = Identity provider
 - Prover (P) = Subject
 - Verifier (V) = Relying party

- Properties:
 - The prover convinces the verifier that he holds a credential with attributes that satisfy some boolean formula:
 - Simple example “age=18 AND city=Cambridge”
 - Prover cannot lie
 - Verifier cannot infer anything else aside the formula
 - Anonymity maintained despite collusion of V & I
1. Issuing protocol:
 Prover gets a certified credential.

2. Showing Protocol:
 Prover makes assertions about some attributes

Issuer
Name=Peggy, age=25, address=Cambridge, Status=single

Prover Peggy

Passport Issuing Authority

Verifier Victor
(Bar staff Checking age)

Can't learn anything beyond age

age=25
Two flavours of credentials

- Single-show credential (Brands & Chaum)
 - Blind the issuing protocol
 - Show the credential in clear
 - Multiple shows are linkable – BAD

- Multi-show (Camenisch & Lysyanskaya)
 - Random oracle free signatures for issuing (CL)
 - Blinded showing
 - Prover shows that they know a signature over a particular ciphertext.
 - Cannot link multiple shows of the credential
 - More complex – BAD

We will Focus on these
Cryptographic preliminaries
- The discrete logarithm problem
- Schnorr’s Identification protocol
 - Unforgeability, simulator, Fiat-Shamir Heuristic
 - Generalization to representation

Showing protocol
- Linear relations of attributes
- AND-connective

Issuing protocol
- Unlikable issuing
- Efficient proof of a signature.

What is a Zero-Knowledge Proof?
Assume p a large prime
- (>1024 bits—2048 bits)
- Detail: $p = qr+1$ where q also large prime
- Denote the field of integers modulo p as \mathbb{Z}_p

Example with $p=5$
- Addition works fine: $1+2 = 3$, $3+3 = 1$, ...
- Multiplication too: $2*2 = 4$, $2*3 = 1$, ...
- Exponentiation is as expected: $2^2 = 4$

Choose g in the multiplicative group of \mathbb{Z}_p
- Such that g is a generator
- Example: $g=2$
Exponentiation is computationally easy:
- Given g and x, easy to compute g^x

But logarithm is computationally hard:
- Given g and g^x, difficult to find $x = \log_g g^x$
- If p is large it is practically impossible

Related DH problem
- Given (g, g^x, g^y) difficult to find g^{xy}
- Stronger assumption than DL problem
More on \mathbb{Z}_p

- **Efficient to find inverses**
 - Given c easy to calculate $g^{-c} \mod p$
 - $(p-1) - c \mod p-1$

- **Efficient to find roots**
 - Given c easy to find $g^{1/c} \mod p$
 - $c (1/c) = 1 \mod (p-1)$
 - Note the case $N=pq$ (RSA security)

- No need to be scared of this field.
Exemplary of the zero-knowledge protocols credentials are based on.

Players
- Public – g a generator of \mathbb{Z}_p
- Prover – knows x (secret key)
- Verifier – knows $y = g^x$ (public key)

Aim: the prover convinces the verifier that she knows an x such that $g^x = y$
- Zero-knowledge – verifier does not learn x!

Why identification?
- Given a certificate containing y
Schnorr’s protocol

Knows: x

Public: g, p

Knows: y = g^x

Random: w

\[
\begin{align*}
P \rightarrow V &: g^w = a \\
V \rightarrow P &: c \\
P \rightarrow V &: cx + w = r
\end{align*}
\]

(witness) (challenge) (response)

Check:
\[
g^r = y^c a \\
g^{cx + w} = (g^x)^c g^w
\]
Assume that Peggy (Prover) does not know x?

- If, for the same witness, Peggy forges two valid responses to two of Victor’s challenges
 \[
 r_1 = c_1 x + w \\
 r_2 = c_2 x + w
 \]

- Then Peggy must know x
 \[
 \text{2 equations, 2 unknowns (x,w) – can find } x
 \]
Zero-knowledge (intuition)

- The verifier learns nothing new about \(x \).
- How do we go about proving this?
 - Verifier can simulate protocol executions
 - On his own!
 - Without any help from Peggy (Prover)
 - This means that the transcript gives no information about \(x \)
- How does Victor simulate a transcript?
 - (Witness, challenge, response)
Simulator

Need to fake a transcript \((g^{w'}, c', r')\)

Simulator:

- Trick: do not follow the protocol order!
- First pick the challenge \(c'\)
- Then pick a random response \(r'\)
 - Then note that the response must satisfy:
 \[g^{r'} = (g^x)^{c'} g^{w'} \rightarrow g^{w'} = g^{r'} / (g^x)^{c'} \]
- Solve for \(g^{w'}\)

Proof technique for ZK
- but also important in constructions (OR)
Schnorr’s protocol

- Requires interaction between Peggy and Victor
- Victor cannot transfer proof to convince Charlie
 - (In fact we saw he can completely fake a transcript)

Fiat-Shamir Heuristic

- $H[\cdot]$ is a cryptographic hash function
- Peggy sets $c = H[g^w]$
- Note that the simulator cannot work any more
 - g^w has to be set first to derive c

Signature scheme

- Peggy sets $c = H[g^w, M]$
Generalise to DL represenations

- Traditional Schnorr
 - For fixed g, p and public key $h = g^x$
 - Peggy proves she knows x such that $h = g^x$

- General problem
 - Fix prime p, generators g_1, \ldots, g_l
 - Public key $h' = g_1^{x_1}g_2^{x_2} \ldots g_l^{x_l}$
 - Peggy proves she knows x_1, \ldots, x_l such that $h' = g_1^{x_1}g_2^{x_2} \ldots g_l^{x_l}$
DL representation – protocol

Public: g, p

Knows: $x_1, ..., x_l$

Knows: $h = g_1^{x_1} g_2^{x_2} ... g_l^{x_l}$

Peggy
(Prover)

Victor
(Verifier)

I random: w_i

$r_i = cX_i + w_i$

P->V: $\prod_{0<i<l} g^{w_i} = a$ (witness)

V->P: c (challenge)

P->V: $r_1, ..., r_l$ (response)

Check:

$\left(\prod_{0<i<l} g_i^{r_i}\right) = h^c a$

Let’s convince ourselves: $\left(\prod_{0<i<l} g_i^{r_i}\right) = \left(\prod_{0<i<l} g_i^{x_i}\right)^c \left(\prod_{0<i<l} g^{w_i}\right) = h^c a$
DL representation vs. Schnorr

Public: g, p

Knows: x_1, \ldots, x_l

Knows: $h = g_1^{x_1} g_2^{x_2} \ldots g_l^{x_l}$

Peggy (Prover):

- $r_i = cX_i + w_i$

Victor (Verifier):

- I random: w_i

P -> V: $\prod_{0<i<l} g^{w_i} = a$ (witness)

V -> P: c (challenge)

P -> V: r_1, \ldots, r_l (response)

Check:

$\left(\prod_{0<i<l} g_i^{r_i} \right) = h^c a$

Lets convince ourselves:

$\left(\prod_{0<i<l} g_i^{r_i} \right) = \left(\prod_{0<i<l} g_i^{x_i} \right)^c \left(\prod_{0<i<l} g^{w_i} \right) = h^c a$
Credentials – showing

- Relation to DL representation

- Credential representation:
 - Attributes x_i
 - Credential $h = g_1^{x_1} g_2^{x_2} \ldots g_l^{x_l}, \text{Sig}_{\text{Issuer}}(h)$

- Credential showing protocol
 - Peggy gives the credential to Victor $(h, \text{Sig}_{\text{Issuer}}(h))$
 - Discloses only some attributes
 - Peggy proves a statement on values x_i
 - $X_{\text{age}} = 28 \text{ AND } x_{\text{city}} = H[\text{Cambridge}]$
How?

- It always reduces to proving knowledge of a DL representation.
 - But which one?

- To simply disclose attributes
 - Cancel them out of the credential
 - For $X_{\text{age}} = 28$ AND $x_{\text{city}} = H[\text{Cambridge}]

- Proves she know the DL representation of

\[h/(g_{\text{age}})^{X_{\text{age}}}(g_{\text{city}})^{X_{\text{city}}} = h' = \prod_{3<i<l} g^{x_i} \]

(Also do not forget to check the signature!)
Linear relations of attributes (1)

- Remember:
 - Attributes x_i, $i = 1, \ldots, 4$
 - Credential $h = g_1^{x_1} g_2^{x_2} g_3^{x_3} g_4^{x_4}$, $\text{Sig}_{\text{Issuer}}(h)$

- Example relation of attributes:
 - $(x_1 + 2x_2 - 10x_3 = 13)$ AND $(x_2 - 4x_3 = 5)$
 - Implies: $(x_1 = 2x_3 + 3)$ AND $(x_2 = 4x_3 + 5)$
 - Substitute into h
 - $h = g_1^{2x_3+3} g_2^{4x_3+5} g_3^{x_3} g_4^{x_4} = (g_1^3 g_2^5)(g_1^2 g_2^4 g_3)^{x_3} g_4^{x_4}$
 - Implies: $h / (g_1^3 g_2^5) = (g_1^2 g_2^4 g_3)^{x_3} g_4^{x_4}$
Example (continued)

- \((x_1 + 2x_2 - 10x_3 = 13)\) AND \((x_2 - 4x_3 = 5)\)
- Implies: \(h / (g_1^3g_2^5) = (g_1^2g_2^4g_3)^{x_3} g_4^{x_4}\)

How do we prove that in ZK?

- DL representation proof!
 - \(h' = h / (g_1^3g_2^5)\)
 - \(g_1' = g_1^2g_2^4g_3\) \(g_2' = g_4\)
 - Prove that you know \(x_3\) and \(x_4\) such that \(h' = (g_1')^{x_3} (g_2')^{x_4}\)
Peggy (Prover) Knows: x_1, x_2, x_3, x_4

Victor (Verifier) Knows: $h = g_1^{x_1} g_2^{x_2} g_3^{x_3} g_4^{x_4}$

Public: g, p

random: w_1, w_2

$P \rightarrow V$: $g_1^{w_1} g_2^{w_2} = a'$ (witness)

$V \rightarrow P$: c (challenge)

$P \rightarrow V$: r_1, r_2 (response)

Check:

$\left(g_1' \right)^{r_1} \left(g_2' \right)^{r_2} = (h')^c a$
Check \((g_1')^{r_1} (g_2')^{r_2} = (h')^c a\)

- **Reminder**
 - \(h = g_1^{x_1} g_2^{x_2} g_3^{x_3} g_4^{x_4}\)
 - \(h' = h / (g_1^{3} g_2^{5})\)
 - \(g_1' = g_1^2 g_2^4 g_3\)
 - \(g_2' = g_4\)
 - \(a = g_1'^{w_1} g_2'^{w_2}\)
 - \(r_1 = c x_3 + w_1\)
 - \(r_2 = c x_4 + w_1\)

- **Check:**
 - \((g_1')^{r_1} (g_2')^{r_2} = (h')^c a \Rightarrow (g_1')^{(c x_3 + w_1)} (g_2')^{(c x_4 + w_1)} = (h / (g_1^{3} g_2^{5}))^{c} g_1'^{w_1} g_2'^{w_2} \Rightarrow (g_1^{2x_3 + 3} g_2^{4x_3 + 5} g_3^{x_3} g_4^{x_4}) = h\)
- Showing any relation implies knowing all attributes.
- Can make non-interactive (message m)
 - \(c = H[h, m, a'] \)
- Other proofs:
 - (OR) connector (*simple concept*)
 - \(x_{\text{age}} = 18 \ AND \ x_{\text{city}} = H[\text{Cambridge}] \) OR \(x_{\text{age}} = 15 \)
 - (NOT) connector
 - Inequality \(x_{\text{age}} > 18 \)
Summary of key concepts (1)

- **Standard tools**
 - Schnorr – ZK proof of knowledge of discrete log.
 - DL rep. – ZK proof of knowledge of representation.

- **Credential showing**
 - representation + certificate
 - ZK proof of linear relations on attributes (AND)
 - More reading: (OR), (NOT), Inequality
1. Issuing protocol:
Prover gets a certified credential.

2. Showing Protocol:
Prover makes assertions about some attributes

Credential
\[h = g_1^{x_1} g_2^{x_2} \cdots g_l^{x_l} \]

\[\text{Sig}_{\text{Issuer}}(h) \]
Issuing security

- **Issuing: What do we want?**
 - Peggy authenticates and provides a list of attributes.
 - Issue checks all and provides a signed credential.
 - In the form we discussed previously.

- **Peggy needs to do two things:**
 - Blind the credential.
 - Multiple times
 - Prove that she possesses a valid signature on it.
 - Without revealing the actual signature.

- **Solution:** the CL signature scheme.
CL Signature Scheme

- **Setup:**
 - Generate and RSA modulus $n = pq$
 (with $p = 2p' + 1$, $q = 2q' + 1$, p, q, p', q' large primes)
 - Choose g_1, \ldots, g_l, b, c
 (all of which are quadratic residues)
 - Public key = $(n, g_1, \ldots, g_l, b, c)$
 Private Key = p, q

- **Signature:**
 - Attributes: x_1, \ldots, x_l
 - Pick a random prime e, and random s
 - $v = (c / ((g_1)^{x_1} \ldots (g_l)^{x_l} b^s)^{1/e}) \mod n$
 - Output signature (e, s, v)
 - Cannot forge because $(.)^{1/e}$ requires knowledge of p, q
How to verify a CL signature?

- Reminder
 - Public: c, g_i, b, n
 - $v = (c / ((g_1)^{x_1} \ldots (g_l)^{x_l} b^s)^{1/e}) \mod n$
 - Signature (e, s, v)

- Zero-knowledge DL Rep. Proof:
 - Get a random r
 - Define $v' = v b^r$
 - Reveal: v'
 - DL Rep. proof of: $c = (v')^e ((g_1)^{x_1} \ldots (g_l)^{x_l} b^{s-er})$
Does that work?

- \(c = (v')^e (g_1)^{x_1} \ldots (g_l)^{x_l} b^{s-er} \)
 - \(c = (v b^r)^e (g_1)^{x_1} \ldots (g_l)^{x_l} b^s b^{-er} \)
 - \(c = (v)^e (b^{re}) (g_1)^{x_1} \ldots (g_l)^{x_l} b^s b^{-er} \)

 - Remember: \(v = (c / ((g_1)^{x_1} \ldots (g_l)^{x_l} b^s)^{1/e} \)

- \(c = ((c / ((g_1)^{x_1} \ldots (g_l)^{x_l} b^s)^{1/e})^e (g_1)^{x_1} \ldots (g_l)^{x_l} b^s \)
 - \(c = (c / ((g_1)^{x_1} \ldots (g_l)^{x_l} b^s) ((g_1)^{x_1} \ldots (g_l)^{x_l} b^s \)
 - \(c = c \)
Unforgeability of signature

Based on Strong RSA assumption:

- Impossible to find a v'
- Without computing $(.)^{1/e}$
- Which is infeasible without p, q
- Prover does not know p, q (only n)
Privacy

- Unlikability of signature and showing
 - Signature (e, s, v)
 - Showing (v’) + ZK proof
 - V and v’ are unlinkable
 - Proof does not learn s, e

- Result:
 - We can show the credential many times.
 - Each time is unlikable to the others.
 - One issue – many (unlinkable) uses.
Putting it all together:

- CL signature proof is already a DL proof:
 \[
 c = (v')^e (g_1)^{x_1} \cdots (g_l)^{x_l} b^{s-er}
 \]

- Integrate all previous tricks to reveal or show relations on attributes.

- E.g. show attributes \(x_1 \) and \(x_2 \):
 - Reveal \(x_1 \) and \(x_2 \)
 - Show \(c / (g_1)^{x_1}(g_2)^{x_2} = (v')^e (g_3)^{x_3} \cdots (g_l)^{x_l} b^{s-er} \)
Key concepts so far (2)

- Credential issuing
 - Authentication & Authorization
 - Signing (using CL)

- Showing Credential
 - Re-randomize and proof possession of signature
 - Integrate proof over attributes

- Further topics
 - Transferability of credential
 - Double spending
Key applications

- Attribute based access control
- Federated identity management
- Electronic cash
 - (double spending)
- Privacy friendly e-identity
 - Id-cards & e-passports
- Multi-show credentials!
References

Core:

More:

- Jan Camenisch and Anna Lysianskaya. *A signature scheme with efficient proofs*. (CL signatures)